Nucleosynthesis

Lecture 3: Big-bang nucleosynthesis
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Overview

- Lecture 1: Introduction & overview April 18
« Lecture 2: Thermonuclear reactions April 25
- Lecture 3: Big-bang nucleosynthesis May 2
- Lecture 4: Thermonuclear reactions inside stars — | (H-burning) May 7
- Lecture 5: Thermonuclear reactions inside stars — Il (advanced burning) May 16
- Lecture 6: Neutron-capture and supernovae — | May 23
- Lecture 7: Neutron-capture and supernovae — Il June 6
« Lecture 8: Thermonuclear supernovae June 13
* Lecture 9: Li, Beand B July 4
 Lecture 10: Galactic chemical evolution and relation to astrobiology July 11

Paper presentations | June 21

Paper presentations i June 27



Overview of previous lecture

Energetics of nuclear reactions
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Overview of previous lecture

Ways to evaluate <ov>

- lab measurements (usually high energies, strong and E/M reactions)
 nuclear theory (approximate) + simplifications (e.g., away from resonances:constant astrophysical
factor, dependence only on Gamow penetration and thermal energy distribution)

iov) = 3.615002E-14 cm keV s/ g Z;=1,Z;=1
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1. Depends on nature of interaction
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2. Significant only for narrow range of
energies (Gamow peak for constant T)
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3. Strongly varying function of temperature
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At sufficiently high temperatures, forward and reverse reactions balance. When this happens, abundances
are determined by statistical physics, N (A, Z) x exp|Q(A, Z)/kT]

When this happens for all possible reactions, nuclear statistical equilibrium is achieved

Bla OK’.'OODI rol https://github.com/jantoniadis/nucleosynthesis/blob/master/demos/Nuc_Lecture_2_Interactive Rates.ipynb


https://github.com/jantoniadis/nucleosynthesis/blob/master/demos/Nuc_Lecture_2_Interactive_Rates.ipynb

Overview of previous lecture

Once rates and conditions (in T.E.: composition, temperature and density) are known, we
can start cooking up the elements

At — {14 0 (_ E I'reactions that destroy i =+ E I'reactions that create z)

Energy generation rate:
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The origin of light elements (isotopes of H, He and Li)

Logarithmic SAD Abundances: Log(H) = 12.0
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The origin of light elements (isotopes of H, He and Li)

H and He isotopes account for ~98% of the baryonic mass in the Universe.

Can they be made in stars?
No.
Only ~10% of a star is converted to He via fusion

Most of the He is subsequently destroyed in reactions or retained in stellar remnants
Observationally, He abundance does not vary significantly with metallicity
Deuterium is destroyed during the pre-ms via D(p, 7)3He which has a large cross section
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The origin of light elements (isotopes of H, He and Li)

Hypothesis: Light elements (particularly H and He isotopes) were created shortly
after the Big Bang under very special conditions

The Alpher, Bethe & Gamow (1948) paper (aka afy paper)

The Origin of Chemical Elements

R. A. ALPHER*

Applied Physics Laboratory, The Johns Hopkins University,
Stlver Spring, Maryland

AND

H. BETHE
Cornell University, Ithaca, New York

AND

G. GAMoOw
The George Washington University, Washington, D. C.
February 18, 1948

Spoiler: this paper is wrong



Big Bang Nucleosynthesis

Nuclear fusion is only possible if the Universe was hot (~MeV) enough for a sufficiently long
period of time. The Universe is expanding (and cooling) which means that nucleosynthesis could
only occur at very early epochs, when the scale factor was of order 1e-10. Only at such early
times, the rates of some reactions could be much faster than the expansion rate (thermal

equilibrium)
Ingredients needed to construct a quantitative theory

We need to know: 1. Temperature (and density) as a function of time
2. Primordial composition of elementary particles

3. Reaction rates between all components



Cosmology

Assumptions
- Cosmological principle (the Universe is isotropic and homogeneous)
- General relativity describes gravity at all scales
- Standard model of particle physics

Observables

VUexpansion — D x Hy; Hy = (674 + 05) kms™? +

Adiabatic expansion

A — Ao
A0

T =TcvmB (%) = 273K x (1+z) sothe Universe was indeed hot very early on

2 =

General relativity

> (a) 8m A kc? 8w Obaryon . Orad A kc?
H—(a)——Gp-l-g—?_?G( a3 +a4)+___

Blackboard



Big Bang Nucleosynthesis
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so at very early epochs, radiation completely dominates; no need to worry about dark matter/energy

aoctl/Q;deochloca_LL%TQocl/t

This scaling of temperature with cosmic time is very important for nucleosynthesis. It means that the

early Universe was a “defect” reactor; reaction rates compete with the expansion rate
A more exact relation will be derived later

Blackboard See WS 2009/10 lecture notes by Peter Schneider for details



Thermal history of the Universe (backwards)

The energy of relativistic particles (photons,
neutrinos, electrons, positrons, etc increased
as we move back in cosmic time
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baryon to photon ratio, n

The primordial composition influences nucleosynthesis, so it’s important to know the number of
(anti)baryons and the number of relativistic particles (photons, neutrinos).
How many of each are present?

T > 10'3 K All particles+anti-particles are in equilibrium. Some examples:

e et 2z S 2vivi e 2vin+rv e pte p+iventet
ny
Roughly equal number of baryons and photons: 17 = o ~ 1
p

At lower temperatures photons are no longer energetic enough to create (anti)baryons. For
equal number of particles and anti-particles, this would soon lead to n=0. Obviously, this is not

the case, which means that the number of particles was slightly larger (at least in this part of the
Universe). Still n << 1

T ~ 1.5 x 10'°K  neutrinos no longer in equilibrium with e-e+

T ~6x10°K Electron-positron pairs annihilate, energy (more precisely entropy)

transferred to photons

Conclusion: shortly after the big bang (and before the onset of nucleosynthesis n became very
small. Since this quantity is conserved it remains small (of order 1e-10) to the present day.
n can be measured directly (exercise 3.3), but for now we shall treat it as a free parameter




proton to neutron ratio

Initially, neutrons and protons are in statistical equilibrium

(—938.2 MeV /kT).
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Figure from Bertulani et al. (2016) Prog. Part. Nucl. Phys., 89, 56-100



nucleosynthesis begins

Now we know the initial conditions (temperature vs time, n, n/p) for this very special environment.
Together with a nuclear reaction network we can thus calculate the evolution of nuclear

abundances

The first reaction that happensis n + p — D + v which is only possible due to the high
abundance of neutrons. Even though the binding energy of D is ~2.2 MeV the reaction starts
around 1MeV, due to the high number of energetic photons at the tail of the thermal distribution
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Figure from Pitrou et al. (2018), Physical Reports, 04, 005

Eventually almost all neutrons
end up in Helium nuclei

Out of 100 nuclei:

» 88 protons and 12 neutrons
76 protons and 12 Deuterium

76 protons and 6 Helium

or by mass: 24% Helium

n/p
1+n/p

so even without detailed calculations
one sees that BBN can reproduce the
observed He abundance, which
mostly depends on n/p at the onset of
D burning

Y =2X, =2




detailed BBN predictions

Detailed nuclear reaction network + plasma properties coupled in a numerical code

Xi=AiYi

10-14

10724

Figures from Pitrou et al. (2018), Physical Reports, 04, 005
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detailed BBN predictions

Final abundances determined by competition between the expansion rate H and the rates of the
nuclear reactions involved

Most relevant reactions involve a strong interaction. The cross-sections of weak and EM
reactions are too small, i.e. the timescales are large (especially for weak interactions which are
completely negligible in BBN

Helium Lithium

D+ p — *He + v

D+D — “He+n “He +* He —" Be + v
D+D —"H+p SH 44 He —7 Li+
“He +n — *H+p Be +n —7 Li+p

SH+ D — “He +n

There are no stable isotopes with mass number 5 (rates of proton and neutron captures on 4He
are far too slow), which halts the production of heavier nuclei. At the same time, temperature
drops and all nuclear reactions stop

Figures from Pitrou et al. (2018), Physical Reports, 04, 005



Variations of standard BBN

n as a free parameter
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Helium abundances not very sensitive to n (almost
all neutrons end up in helium nuclei anyways...)
Excellent agreement with observations

Y, = 0.2449 + 0.0040

With increasing n, deuterium can more easily be
converted to helium, so its residual abundance
decreases. This sensitivity and the fact that D is not
produced in stars, makes it an excellent
“paryometer”. Again, there is perfect agreement with
observations for the value of n derived by Planck

(D/H), = (2.53 4+ 0.04) x 107°

Helium 3 is far more difficult to measure since its
abundance is low and it is also created in stars

Lithium increases at low n (less protons around to
destroy it), but also at high n (more beryllium
produced which later decays to lithium)

The Universe has a lithium problem! 2-4 times less lithium than predicted

numbers from Cyburt et al. 2015



Observational constraints on BBN

To understand why there is a problem for Li while predictions for other elements seem
to be OK, it is important to get precise observational constraints

Helium

Most stars (except at very high T) have no helium absorption lines in optical wavelengths (why?)

Sun abundance constrained by chromospheric emission

J nm

A=U nn =Ul am S50 rr LU nm b=l nn AU e

Pierre Janssen (1868)

Constraints mostly from emission lines in low-metallicity nebulae
and galaxies.

Indirect constraints also come from its influence on stellar
structure (e.g. asteroseismology, GC populations, etc)

Y, = 0.2449 + 0.0040

Figure from lzotov & Thuan (2004a) ApJ, 602, 230



Observational constraints on BBN

Deuterium

All deuterium must have originated during BBN since it is only destroyed in stars and it is vastly
more abundant than lithium which can also result from spallation

D/H on earth is greatly enhanced by fractionation,
hence, not representative of primordial abundance

Early constraints from solar wind, Moon, planets,
gas-rich meteorites and C1 chondrites

At radio wavelengths:
Transitions in DCN, DCH+, DI hyperfine structure

uv
HD and DI transitions in the ISM

With the advent of 10-m class mirrors, more direct
constraints using the isotopic blue shift (87 km/s!)
relative to H

(D/H), = (2.53 +0.04) x 107°

both in the ISM and in stars

Tytler, O’Meara, Suzuki and Lubin (2000)

Flux {pfy)

.
el

Normalized Flux

3E00

FrEs T

Flux (10 % &

i
<

o

—

—

T ¥ | L] T T ¥ | L] T T ¥ | ¥ T

« = [ 4872
‘&.Jt' Ol

QS0 1907=100% \

Jl

|

ol "W hatrs

o ayﬂﬁ”4u¢q¢u~»v e s
-—b.l.—‘_ A

-‘:C'('C

5_000 enoo mon
I T | ™
i D H =
- [
|
‘] I L}’ o
— .r B
56656

# N e

Mm: q“")f ll ‘Vl r"/" ':n‘ ‘J‘d

£H600 uC-. hu(b

Wivelenglh (Anpst o)

m L(, V

- e .
BEDC o0



Observational constraints on BBN

Helium-3

Extremely difficult to constrain primordial abundance for several reasons

Abundance lower than D, no absorption lines (similar to 4), atomic lines almost identical to
Helium-4, also created and destroyed in stars

At radio wavelengths:
3He+ hyperfine transition at 3.46cm in “unevolved” objects (i.e. H Il regions) but challenging due
to background noise and competing emission mechanisms which require careful modelling
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Figures from Rood et al (1993), Baina et al. (2002), Nature, 415, 54-57



Observational constraints on BBN
Lithium-7

Measurement of lithium in stars of different metallicities; extrapolatedto Z =0
In meteorites, most is in the form of Lithium-7 (92.5%)

In low-mass stars (including the Sun) with convective envelopes, lithium is depleted from the
surface and destroyed. Abundance on the Sun is ~150 lower than “standard” theory predicts
Nevertheless, at low metallicities, all stars seem to have the same abundance, with very small

scatter
The observed abundances are 2-4 times lower than standard BBN predictions
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What is causing the lithium problem?

Unknown

Could be either due to observations, astrophysical variables (e.g. meridi), or new physics
(unknown resonances). Exotic BBN is unlikely, as it is hard to change the Lithium abundance

only

Some recent results

Cross section of 7Be(n,a)*He, even lower than

expected!
Barbagallo et al. (2016) PRL, 117, 15
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SMC constraints on 7Li are closer to BBN predictions
Howk et al. (2012), Nature, 489, 7414



BBN as a probe of cosmology and fundamental physics

Q: Why do we care about ultra-precise abundance measurements in the first place?
A: Because they can probe the conditions of the Universe well before the CMB era

We already discussed treating n as a free parameter

Then, constraints on primordial D/H yield an (independent) constraint on n, and through that, on
the baryon density Qm (exercise 3.3)

np = 2.73 x 107%Q,h% = Qph? = 0.0222 + 0.0003

BBN predicts an extremely small baryon density (the very reason it was dismissed in the
50s...), which is consistent with the CMB constraints

What else?
We can also treat the number of neutrino families as a free parameter

3c?
rad — + + l\/y U o— 2 = T = t_1/2
Crad = @y T Qe ¢ (9:/2) 0 (167Tg*aG)

This affects the energy density vs T and therefore the expansion rate vs time, the freeze out value
of n/p and the temperature Tp at which it occurs —> Helium abundance affected



BBN as a probe of cosmology and fundamental physics
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BBN as a probe of cosmology and fundamental physics

Other possibilities

Deviations from GR affecting the expansion rate, weak interaction physics (affecting initial
abundances), neutron lifetime, alternative reaction rates....
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Neutron decay
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Thus far, the measured mean lifetime of neutrons seems to
depend on the measurement method.

Could be due to new physics! What is the effect on BBN?

[visible contusion]



Can we the Universe before the onset BBN?

An interesting recent resulit

Article Published: 25 Febkruary 2019

First constraint on the neutrino-induced phase
shift in the spectrum of baryon acoustic
oscillations

Daniel Baumann, Florian Beutler, Raphael Flauger, Daniel Green m, AnZe Slcsar, Mariana Vargas-Magana,

Benjamin Wallisch & Christophe Yeche

Nature Physics 15, 465-469 (2019) Download Citation ¥
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Summary

Take Home Message

1. Big bang nucleosynthesis predicts the abundances of light isotopes extremely
accurately, over 9 orders of magnitude

Lithium abundance remains challenging

Inference of primordial abundances from observations is challenging

BBN probes the very early Universe, well before the CMB was emitted

o &~ b

As precision in measurements increases, we will be able to constrain physics

beyond the standard model and GR with increasing precision



Coming up

Hydrogen burning in (and on) stars (spoiler: quite different than BBN)

Hydrogen-burning Nonburning
shell ervelope

Nonburning
nelium “ash”



